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magnetic structure 
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132 KirovStreet, SU-426001, Izhewk, USSR 

Received 25 July 1990, in final form 13 March 1991 

Absbact. A technique for the calculation of electron states in a helical magnetic structure 
based on a derivation of the Dirac equation by the relativistic Korringa-KohwRostoker 
method is presented. Analysis of hvo limiting cases has been carried out: transition from a 
helical magnet to a relativistic ferromagnet and to the non-relativistic variant of the theory. 
The main dispersive equations for a relativistic magnet with helical magnetic structure 
obtainedinthispapermakesitpossible tostudythedependenceoftheferromagnetelectronic 
spectrum on the spin orientation. 

1. Introduction 

In our previous papers [l, 21 (hereafter referred to as I and 11, respectively) a simplified 
method of calculating the simplest collinear magnets based on the relativistic Green 
function (RGF) method has been presented. In this work the approach proposed is 
generalized to the case of the helical magnetic structure. 

In recent years, rather a larger number of papers have been devoted to constructing 
a theoretical scheme for the calculation of the electron states in magnets based on the 
Dirac equation. We refer to three of these papers [3-51, allowing one to appreciate the 
possibilities of the commonly used technique of calculating the energy bands based on 
the multiple-scattering formalism. A number of recent papers [6-81 containing further 
development of this approach should be mentioned as well. 

Consider amonatomiccrystal lattice with the sitesoccupied by atoms whose magnetic 
moments form a helical structure. Choose the Or direction along the helix axis and let 
a be the interatomic distance along this axis. One of the sites is referred to as the first 
site and the origin of the global coordinate frame is placed at this site, the axes Ox and 
Oy being oriented in such a way that the projection of the spin S, corresponding to this 
site onto the Oy axis is equal to zero. Denote the angle between the spin orientation and 
the Or axis by /3, the angle between the spin projection onto the coordinate plane ( x ,  y) 
andtheOxaxisbya,andlet avarybythesamequantityAaintheone-stepdisplacement 
along the helix. This spin projection is also assumed to be back to the initial position in 
N steps, i.e. ALY = 2n/N or, in fact, SN+ I I/ S,. 

Also, at each site j we introduce a local coordinate frame with its Ori axis along the 
positive spin orientation, the origin placed at the site and the direction of axes defined 
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Figure 1. Unit magnetic cell. 

by Euler angles (a;, b;, y;). It is always assumed that all y; = 0, for the first site e, = 0 
and, while passing from a site to its neighbour, the angle (Y varies by ha. Then for the 
jth site the orientation of a local coordinate frame is defined by the angles 

ai = A a ( j  - 1) P, = P  y; = 0. (1) 

Choose further the unit cell so that the vectora, = (0, 0, U )  is one of the lattice basis 
vectors, and a, and u2 are the other two vectors. The magnetic structure obtained is 
obviously periodic, with a period (0, 0, Nu); therefore, the polyhedron constructed on 
the vectors U , ,  U*,  Nu3 is the magnetic unit cell. Denote the vectors of the original lattice 
by R., the reciprocal lattice vectors by Kn, the reduced wavevector by k, and the volumes 
of the unit cell and Brillouin zone by Q and QB, respectively. Also let Te, Qn, q,  52, and 
QBM be the corresponding quantities for the magnetic lattice. 

The relations between the geometric characteristics of the crystal and magnetic 
lattices are obvious; we shall introduce them as required. The total geometric picture is 
illustrated in figure 1. 

2. Mathematical formulation of the problem 

The general scheme for calculating the electron energy spectrum of the helical magnetic 
structure described can be constructed by analogy with I and 11. Again the starting point 
of our considerations will be the equation for the large component of the Dirac four- 
component spinor (see I,  equation (10)) 

AY + W [ E  - (V + 6 AV)]" - ( W ' / W ) ( u  * $)(U * V)" = 0. 

w = 1 + (E - V)/CZ 

(2) 

(3) 

Here u,(i = x ,  y, z) are the Pauli matrices, i is the unit vector, 

and c is the velocity of light. 
The potential involved in (2) requires some clarifying. We assume that identical 

muffin-tin (MT) spheres inscribed into the crystal cell are constructed around each lattice 
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site. In the local coordinate frame connected with a given atom the MT potential does 
not depend on the site number and has the usual meaning: 

v=  l(V+ + v-) AV = l (V+  - V - )  (4) 

where V+ and V -  are the potentials acting on electrons with different spin orientations. 
The operator 9 AV in the local coordinate frame also has its standard form 

a j A V = A V & , ;  (5 )  

but does depend on the site number since the Pauli matrix b2; has the canonical form 

only in the local coordinate frame connected with the site j .  
By virtue of the above discussion the general solution inside the jth MT sphere will 

be written in the proper coordinate frame in exactly the same way as before (see 11, 
equation (7)). 

Here pi is the radius vector measured from the jth site in the local coordinate frame; 1 is 
the orbital quantum number; p is the projection of the total angular momentum onto 
the axis 0 2 ;  ; m = p - 1 and m' = p + 1. The index U = 1 , 2  labels two linearly inde- 
pendent solutions of the set of radial equations (see I, equation (13)) 

(8, = p / l p l ,  and the indexjlabellingp is omitted). 
The empty-lattice Green function of a structure with base will be written in the form 

P, 101 
1 exp[i(q + Q,) . (rj + hj - r;. - hi.)] G+(q,E';rj,r;') = --E 

s l M  f Iq+ ellz,- E' (9) 

where E' = E(1+ E/c*), hj = a3(j - l), and 'j. and r,!, are the coordinates measured 
from the corresponding sites of the magnetic cell in the global coordinate frame. Using 
the expansion of the Green function in terms of spherical harmonics, one can write the 
solution of equation (2) outside the MT spheres as follows (see 11, equation (12)): 

Here 11 = (E')'/z,jlandnlare the spherical Bessel andNeumannfunctions, respectively, 
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Bir 
,,,,l~ms are the structure constants of the lattice with a base and b z =  are unknown 

The main dispersive equation is obtained from the condition of smooth joining 
expansion coefficients. 

of the solutions Y y )  and 'PI, through the MT spheres of the magnetic cell: 

3. General formalism 

To make use of conditions (ll), one should express the solution Yy) inside the MT 
spheres and the solution Y,, outside the MT spheres in the same coordinate frame. So 
we rewrite solutions (7) in the global coordinate frame. According to [ll] the spherical 
harmonics are transformed in this case to the following form: 

Ylm(bJ) = E R%,(aJ,B, ,  (12) 
m' 

where, taking account of (l), 
( I  + " ) ! ( I  - m')!(l + m)!( l  - m)! 

R ~ ~ , , , ( a i , p ,  0) = exp(-im'aj) 2 (-1)r , (f + m' - t ) ! ( l -  m - t)!t!(t  - m' + m)!  

x [cos(B/2)]~+"-"-" [sin@/2)]"-"+". (13) 
Also, it must be taken into consideration that the spinors themselves are transformed 

too, this transformation being defined by the matrix 

Now substituting (16) and (10) into the first of conditions (11) and multiplying the 
result on the left by [R(1'2)( j ) ] -1  yields 
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where the following notation is introduced: 

(184 

(18b) 

V) 0') 
c&+ = U? bh+  - ojbr,,- 

(i') 0') 4,- = v,? blm+ + uibl,-. 
Multiplying (17) further by Y;lmi(fi) and using the orthogonality of spherical functions 
we get 

(In writing (19) we have replaced l1 by I and m ,  by m.)  Finally, we multiply the first 
equaEtyin(l9)by R$;(j)andthesecondbyR$;,(j)(@'=m + l)andsumoverm,. 
Then, by virtue of the unitarity 

R$,,,,(j)R%-(j) = hmVd (20) 
m 

equations (19) are transformed to expressions analogous to those obtained in our 
previous papers: 
c(i) (i)* . ii' 

I ~ , I ~ I ~ , I +  + C&lp,z+ = [ R m l d ~ ) & ~ l . i w j i  + 

Further, as before, one has to write the equatio 11s for the radialderivativesand group 
in pairs the equations in the unknown C;li, with the same spin orientation; then one 
should express Cgl. from each pair of equations and equate the relations obtained, etc. 
The main steps of the algebraic manipulations are presented in appendix 1. 

4. Dispersive equation and its analysis 

The algebra in appendix 1 results in a system of algebraic equations in the unknown 
b 2 =  .whose solvability condition gives the main dispersive equation 

.., 
Here Bii' = B$,f.,f(q, E') are the matrices of the structure constants, and the matrices 
Ti are related to certain auxiliary matrices Si by the following expressions: 

2Tf = (Sf + S i )  + (Sf - S;)cosB - (Si + Sf3sinP 

2 T i . = ( S j - S f ) - ( S i + S f ) c o s p . + ( S f  -S;)sinb. 
2T:,=(Sf I + S ; ) - ( S j +  - S ; ) c o s p + ( S i + S f ) s i n p  (23) 

The matrices Si, in turn, are expressed in terms of the scatteringphase cotangents: 
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where, in the notation of appendix 1, 

W" - 
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P a )  - v(A;*/A,,,) 

= ?dA.$-/A!p). (Eb) 

The generalstructureof the matricesSiandthe explicit expressionfor2 = 1 are presented 
in appendix 2. 

In fact, equation (22) itself can be used to perform calculations. However, the form 
of theequation in which thestructureconstantsBB'of themagneticlatticeare expressed 
in terms of the structure constants A of the original lattice seems to be more convenient. 
It is shown in appendix 3 that 

B ~ ~ , r m . ( q ,  E') = exp[iq. (h, - h..) -E exp[iK, . (hi - hf) ]A!m, , rmf(kp ,  E') 

where kp = q + K,, 

. ., 1 
(26) 

N P  

K p  = ( P / N ) h  hi = ja3 j , p = O , l , .  . . ,N- 1. (27) 

Denote the Nth root exp(i2n/lN) of unity by o, the matrix of the structure constants 
at the point kp by A!, and the scalar matrix wPi of the same size as A, by l / N 1 k 2 p p  In 
this notation, equation (22) becomes 

Form, next, the matrices 

whose elements are the blocks 51, ( p .  j = 0, 1,. . . , N - 1) and multiply equation (28) 
on the left by a, and on the right by O,. 

Taking into account the orthogonality 

C 51p.iO;"i = 6,*,"i (30) 
i 

we get. 
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or in the explicit form, 

i i 

Since equation (32) is obtained from (22) by unitary transformation, these equations are 
sure to be entirely equivalent to each other. The transition from the site representation 
(22) to the quasi-momentum representation (32) performed in the dispersive equation 
was used by us earlier for another problem [12]. 

Two limiting cases are interesting to analyse: a ferromagnet and the non-relativistic 
version of theory. 

In the first case, /3 = 0 and, according to (23) and (24) (see also appendix 2), 

I I Ti = Si = W+- exp(in;) (33) 
T I  = S t  = W i t  

i.e. the matrices Tf and Ti exp(-iaj) do not actually depend on j .  Then, in (31), 

(7 Q;PpGj)T' = S,.W'* (: Q~Pp1.)Tjexp(-iiu,) = 6,,.W+- 

(34) 
and the dispersive equation becomes divided into N independent blocks of the form 

A p + W + +  W+- 

Iw-+ A, + W-- (35) 

Since with q varying in the first Brillouin zone of the magnetic lattice, the set of vectors 
&, does fill the whole Brillouin zone of the crystal lattice, the system of equations (35) is 
obviously equivalent to the dispersive equation for a ferromagnet (see I, equation (22)). 

According to1,equation (39), in thenon-relativisticlimit the matrices We' are equal 
to zero and W" are diagonal (their matrix elements do not depend on p ) .  Taking this 
into account gives 

St I = W * ' ( N -  R) si = 0 (364  

(36b) 
2T7 = ( S t  + S,) * (SJ - S i )   COS^ 2T, = (St  - S i )  sin /3 

i.e. T7 and Ti do not depend on j and are diagonal. Substituting (36b) in the sums (31) 
yields 

(:S2,pPej)T* = d p p ) ( W &  AWcosP) (37) 

where 

(38) w =  &(W++ + w--) AW=l(W ++ - w--). 
Taking into account that exp(iq) = P,, we get for the two other sums 
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Thus in the non-relativistic limit for a helical structure the equation is again divided into 
N blocks, although of more complicated form than for a ferromagnet: 

S A  Ostanin and V P Shirokouskii 

A, + w +  A W W S ~  A W S ~ U ~  
(40) A, + W +  AWcosP 

One can see that, in the non-relativistic case in a helical structure, two neighbouring 
points kp and k,,, are interconnected, the 'positive' spin orientation at the point p 
interactingwith the 'negative' spin orientation at the pointp + 1.  Detailed consideration 
of theory can be found in [13-15]. 

5. Conclusion 

To conclude, it should be mentioned that equation (22) enables us to study the depen- 
dence of the electron spectrum of a ferromagnet on the spin orientation. For that it is 
sufficient toreplacein(22) thestructureconstantsB'?(q, E') byA(k, E'),withkassumed 
to vary in the Brillouin zone of the crystal lattice, and to omit the site index j in all other 
quantities. 

Notealsothat the formalgeneralizationofthe above scheme tothe caseof thecrystal 
cell with a larger number of atoms and to the case of more complicated magnetic 
structures is not difficult to carry out. In fact, the possibility of conducting calculations 
is limited by the computers available. It must be realized, of course, that the anti- 
ferromagnetic state as well as the states with inverted spin in general cannot be obtained 
within the framework of the technique presented, since the spin inversion is connected 
with time inversion rather than with rotations and reflections and requires special 
consideration. However, the generalization to such a case can be performed, if necess- 
ary, using the results of [2]. 

Appendix 1 

Hence 

(A1.k)  
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(A1.26) 
x [ j / , g / , t . ~ + I +  t l x R f ! , , n l ~ ( i ) a ~ , ~ I n / , g / ~ , l + l  ml I 

[ f i ? f 2 1  =fLfi ,-fifz. 
The second pair of equations for the spin 'down' differs from (Al.l)  only in the fact 

that we have the index - instead of + and m' = A + 1 instead of A. Again we h d  
C $  and C$$ and equate the expressions obtained to those in (A1.2). Taking into 
account 

(A1.3) 

Perform one more transformation in (A1.4). Let us multiply the first equation by 
[ j l , g t@, , - ] ,  thesecond by [ j / , g a z - ]  andsubtract thesecondfrom the first. The equation 
obtained is written as follows: 

2 2 [ R f ! ~ ( j ) B % I , l , , m m . a ~ ~ , + A , @ ]  + q 
1' Pm'ml  m i  

[Rf!$( j )a&+A&+] 

(A1.5) 

Similarly, multiplying equations in (A1.4) by [j!, gl@,l+] and [j, ,  g,li,2+] and subtracting 
one from the other gives 

Here, as before (11, appendix 1, equation (A1.3)), the following notation is used: 

(A1.7a) 

(A1.76) 
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A$- = [ n ~ g , t - l [ j ~ g ~ , ~ -  I - [ j & p , l - I [ n ~ g ~ p . ~ - I =  [ n ~ j ~ l [ g ~ , + g ~ - l  

S A  Ostanin nnd V P Shirokouskii 

(A1.7~) 

Let us further multiply equation (A1.5) by R g f i ( j ) ,  (A1.6) by R c f i * ( j )  and sumover 61 
and m‘ ,  respectively. Because of the unitarity of the rotation matrices we have 

A$ = [ j ~ g ~ ~ , ~ + I [ n ~ g ~ ~ , ~ + l -  [ n t g ~ , ~ ~ + ~ [ j ~ g ~ ~ . ~ + l  = - [ n h l [ g ~ ~ . ~ + g ~ +  1. 

[ (BK,,tm9 + q6,.Sr,, R f ! ~ ( j ) R ~ ( j ) ~ $ ’ ( j ) ) n ~ m , +  
El I i’ m’ 

+ q6,6,, E R !,?El(j)Rf!8L(j)W,G (1) upm*- = O  (A1.8a) + - - I ” ’  1 
ii’ 

( 
E [ (L$19,m. + q6;i’Sllf w R ~ . ( j ) R ~ , L . ( j ) W , - ( i ) ) n , , m , -  
I r m’ 

+ ( q6,i’61p 2 fi’ ~ ~ , . ( j ) ~ ~ , ~ ( j ) ~ . , ’ c j ) ) ~ ~ , + ]  = 0. (A1.86) 

Here all the terms were joinedinonesum, division by Al#wasperformed andsummation 
over l”m”in the first term and over ml in the second and third terms was replaced by that 
over l’m’. 

Finally, it is necessary to come back to the unknown a:? b{mt. For that let us rewrite 
(A1.8) in the block matrix form. 

exp(ioc,)2@fq E* - q 2  -exp(-in;)21~Eq 

(A1.9) 

( A X )  

where 8))’ = ( B L , L - m f )  are the structure constant matrices (26) and a$ = (ac t )  are the 
vector columns. Pass from the vector a’& to bt’ = (blm2) and multiply (A1.9) by the 
matrix of inverse transformation: 

0)  

This is the main system of equations. 
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Appendix 3 

Let b,, b2, b, be the main vectors of the reciprocal lattice. Then the main vectors of the 
lattice reciprocal to the magnetic lattice will be b,, b2, b3/N. Denote by K, Nvectors of 
the form 

K p  = (P/N)b: p = o , 1 , 2  ,..., N - I .  (A3.1) 

Obviously, the vectors K~ coincide with Nvectors Q, located inside the cell constructed 
on the vectors bl, b2, &. All the other vectors Q, can be obtained from them by adding 
the vectorsK,. Therefore in sum (9) the summation over Q, can be replaced by that over 
Kn and K,. Then in analogy with 11, appendix 2, equation (A2.1), we have 

(A3.2) 
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where kp = q + K The expression in large parentheses is the Green function of the 
p: original crystal lattice, i.e. 

G i f ( q , E ' ; r l , r ; )  =exp[iq-(h, -j i .)]  

S A Ostanin and V P Shirokouskii 

(A3.3) 

Writing the lattice Green functions on the left- and right-hand sides of (A3.3) as 
the expansions in spherical harmonics and equating the corresponding terms of the 
expansions, one easily gets 

where &,i,f8mt and A,,,.,. are the structureconstantsof the magneticandoriginal lattices, 
respectively. Note also that by definition 

(A3.5) Kp . h, = ( p j / N b ,  . a3 = h ( P j / N )  
and hence exp[iK,. (h, - h,.)] is one of the values of the Nth root of unity. 
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